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I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar has
received considerable attention recently [1–3]. Unlike the
traditional phased array radar, the MIMO radar is able to
utilize multiple transmit and receive antennas for
transmitting and receiving signals. Moreover, the
transmitter simultaneously sends out orthogonal
waveforms, which leads to gain of waveform diversity. In
the presence of targets, the transmitted signal will be
reflected to the receiver. The MIMO radar is superior to the
phased array radar in target detection because the former
transmits a wide beam while the latter uses a narrow beam
for probing targets. As a result, the MIMO radar can offer
better parameter identifiability and resolution [4].

In statistical MIMO radar [5–7], the transmit antennas
are widely separated and the targets can be identified from
different angles at the same time. As a result, spatial
diversity of the system is increased by exploiting different
radar cross section (RCS) information, and targets can be
detected and located with high resolution. Unlike the
statistical radar, the transmit antennas of colocated MIMO
radar are very close to each other. Hence, the RCSs of the
targets can be treated equal. Colocated MIMO radar can
be categorized into two types, namely, monostatic and
bistatic. For monostatic configuration, transmitters are
close to the receivers, and thus the direction-of-departure
(DOD) and direction-of-arrival (DOA) of each target are
equal. It can provide higher parameter identifiability, more
reliable target detection and more flexible transmit beam
pattern design [8, 9]. On the other hand, the transmitters
are far apart from the receivers in the bistatic radar, and
hence each target has distinct DOD and DOA, resulting in
improvement in covertness and localization accuracy [10].

In this paper, we focus on joint estimation of DODs
and DOAs for K targets using a single pulse in bistatic
MIMO radar. Unlike the existing estimation algorithms,
the proposed algorithm is iterative and a function value
checking procedure is used to ensure that the best DODs
and DOAs estimates are selected. Therefore, the
parameter estimate is guaranteed not worse than that of the
commonly adopted estimation of signal parameters via
rotational invariance techniques (ESPRIT) [11–13]. Here,
the Swerling II model in which the distribution of RCS is
fixed, is adopted. The DOD and DOA estimates
correspond to the peak of the maximum likelihood (ML)
cost function; though optimum, a 2K-dimensional (2K-D)
search is required. To alleviate the high computational
burden, the search can be divided into 2K iterative 1-D
searches [14] at the expense of slow convergence.
Subspace algorithms such as the ESPRIT [11,12,15] and
multiple signal classification (MUSIC) [16, 17], which
exploit the signal and noise subspaces of the sample
covariance matrix, are more computationally attractive
and thus widely applied. In these suboptimal schemes, the
DODs and DOAs are automatically paired up but the
number of identifiable targets is less than that of the ML
approach. The identifiability limit of the ESPRIT
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algorithm is lower than that of the MUSIC method as the
latter fully utilizes the noise subspace. In this paper, we
propose an ESPRIT scheme that can offer more reliable
parameter estimates than the conventional ESPRIT
algorithm with higher identifiability limit. On the other
hand, it has been claimed [18] that the MUSIC algorithm
can identify up to K = (MN – 1) sources where M and N
are the numbers of elements in the MIMO radar transmit
and receive antenna arrays. As the second contribution in
this paper, we disprove this identifiability limit even for
infinite snapshots.

The rest of the paper is organized as follows. In
Section II, the signal model and problem formulation are
introduced. The ESPRIT-like algorithm is developed in
Section III. In Section IV, we prove that the MUSIC
algorithm cannot identify (MN – 1) targets. It is worth
pointing out that this identifiability limit indicates the
maximum number of identifiable targets, which is a
necessary operational condition for the proposed method.
In Section V, numerical examples are used to evaluate the
performance of the proposed method. Finally, conclusions
are drawn in Section VI.

Notation: We use boldface uppercase letters to denote
matrices, boldface lowercase letters for column vectors,
and lowercase letters for scalar quantities. Superscripts
(·)*, (·)T, (·)H, (·)–1, and (·)† represent complex conjugate,
transpose, Hermitian transpose, matrix inverse, and
pseudo inverse, respectively. In addition, ∝ means
proportional to. The â denotes the estimate of a and E{a}
is the expected value of a. The [A]m,n represents the (m, n)
entry of A ∈ C

M×N, while tr(A) and |A| are its trace and
determinant, respectively. The diag(a) represents a
diagonal matrix whose nonzero elements are given by a
while the block diagonal matrix, with A1 and A2 being its
components, is denoted by diag(A1, A2). The vec(A) is the
columnwise vectorized version of A with vec–1 being its
inverse operator. The Kronecker product and Khatri-Roa
matrix product are denoted by ⊗ and ◦, respectively.
Furthermore, IM is the M × M identity matrix, 0M × N is
the M × N zero matrix, and 1M is the M × 1 vector with
all elements equal one. The x ∼ N (μ, �) means that x
follows a complex Gaussian distribution with mean μ and
covariance matrix �.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider a MIMO radar system consisting of M
transmit and N receive antenna elements with uniform
linear array (ULA) configuration. The reflected pulse of
the K targets arrived at the receive antennas, after matched
filtering, can be expressed as

X = FS + Q ∈ C
MN×L (1)

where

F = H ◦ G ∈ C
MN×K (2)

G = [ g1 g2 · · · gK ] ∈ C
M×K (3)

H = [ h1 h2 · · · hK ] ∈ C
N×K (4)

gk = [
1 ak · · · aM−1

k

]T
(5)

hk = [
1 bk · · · bN−1

k

]T
(6)

ak = exp

⎛
⎝j

2πdt sin
(

�

θk

)
l

⎞
⎠ (7)

bk = exp

⎛
⎝j

2πdr sin
(�

φk

)
l

⎞
⎠ . (8)

The
�

θk ∈ (−π/2, π/2) and
�

φk ∈ (−π/2, π/2) denote
the DOD and DOA of the kth target, respectively.
Furthermore, l is the carrier wavelength while dt and dr

are the interelement separations in the transmitter and
receiver, and they are known constants. The [S]k,� is the
RCS of the �th snapshot of the kth target, � = 1, 2, · · ·, L,
with L being the number of snapshots. In this paper, we
adopt the Swerling II model and the distribution of the
RCS of the kth target is assumed the same for all
snapshots, that is, [S]k,� ∼ N (0, α2

k ), k = 1, 2, · · · , K,

� = 1, 2, · · · , L. The entries of Q are zero-mean white
Gaussian samples and independent of each other, that is,
vec(Q) ∼ N (0MNL×1, σ

2IMNL) where σ 2 is the noise
power. The values of {α2

k } and σ 2 are unknown. In the
following, we express the DODs and DOAs as spatial

frequencies by assigning θk = 2πdt sin(
�

θk)/l and

φk = 2πdrsin(
�

φk)/l for brevity. Since dt, dr, and l are

known and both |�

θk| and |
�

φk| are less than π /2, our task of
estimating the DODs and DOAs is equivalent to finding θ k

and φk, k = 1, 2, · · ·, K.

III. ALGORITHM DEVELOPMENT

The covariance matrix of the received data, denoted by
R, can be written as

R = 1

L
E

{
XXH

} = FϒFH + σ 2IMN (9)

where

ϒ = diag (υ) , υ = [
α2

1 α2
2 · · · α2

K

]T (10)

If θ k and φk are sampled from a distribution that is
continuous with respect to the Lebesgue measure in C

2K,

then the ranks of F and R are K almost surely [19]. By
using eigenvalue decomposition (EVD), R is factorized as

R = Us diag ([l1 l2 · · · lK ]) UH
s

+Un diag ([lK+1 lK+2 · · · lMN ]) UH
n (11)

where

l1 ≥ l2 ≥ · · · ≥ lK > lK+1 = · · · = lMN = σ 2. (12)

Here, Us ∈ C
MN×K and Un ∈ C

MN×(MN−K) represent the
signal and noise subspaces, respectively. Furthermore,
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l1, l2, · · ·, lMN, are the eigenvalues corresponding to [Us

Un]. As Us spans the same space as F, we have

FT = Us (13)

where T ∈ C
K×K is an unknown full-rank matrix. Next,

we define an index matrix I as

I =

⎡
⎢⎢⎢⎢⎢⎣

1 M + 1 · · · M (N − 1) + 1

2 M + 2 · · · M (N − 1) + 2

...
...

. . .
...

M 2M · · · MN

⎤
⎥⎥⎥⎥⎥⎦

. (14)

Let U1 and U2 be two submatices of Us containing the
rows indexed by the first and last (M – 1) rows of I,

respectively. It can be shown that

U1 = (H ◦ G1) T (15)

and

U2 = (H ◦ G2) T (16)

where G1 and G2 contain the first and last (M – 1) rows of
G, respectively. From (15) and (16), we have

U†
1U2

= (
TH (H ◦ G1) H (H ◦ G1) T

)−1
TH(H ◦ G1)H (H ◦ G2) T

= T−1
(
(H ◦ G1)H (H ◦ G1)

)−1
(H ◦ G1)H (H ◦ G2) T

= T−1
(
(H ◦ G1) H (H ◦ G1)

) −1(H ◦ G1) H (H ◦ (G1�)) T

= T−1((H ◦ G1)H (H ◦ G1)
)−1

(H ◦ G1) H (H ◦ G1) �T

= T−1�T. (17)

Note that the third line is obtained from the second line
using G2 = G1� where � = diag(a) with a = [a1 a2 · · ·
aK]T and ak is defined in (7). Moreover, the fourth line is
obtained from the third one using the fact that
H ◦ (G1�) = H ◦ (G1 ◦ aT ) = (H ◦ G1) ◦ aT =
(H ◦ G1)�. Similarly, we can construct two matrices,
U3 = H1 ◦ G and U4 = H2 ◦ G, which are two
submatrices of Us containing the rows indexed by the first
and last (N – 1) columns of I, respectively. Here, H1 and
H2 are H except with the last and first rows being
removed. Following the same procedure, we obtain

U†
3U4 = T−1�T (18)

where � = diag(b) with b = [b1 b2 · · · bK]T and bk being
defined in (8). In the 2-D ESPRIT algorithm [11], b and T
are estimated via EVD of (18). Then, T is substituted back
into (17) to obtain � whose diagonal elements are the
estimate of a. In practice, R is replaced by the sample
covariance matrix R̂ = XXH/L. In this case, (12) is
modified as l̂1 ≥ l̂2 ≥ · · · ≥ l̂K > l̂K+1 ≥ · · ·
≥ l̂MN > σ 2. Furthermore, a, b, G, H, Us, F, T, �, � and
Ui, i = 1, 2, 3, 4, are replaced by their estimated quantities,
â, b̂, Ĝ, Ĥ, Ûs , F̂, T̂, �̂, �̂ and Ûi , i = 1, 2, 3, 4.

Similar to the ESPRIT, the proposed algorithm first
applies EVD on R̂ to obtain T̂, then F̂ is estimated as
F̂ = ÛsT̂−1. Analogous to Ûi , we define F̂i , i = 1, 2, 3, 4.

The b̂ is obtained as the diagonal elements of �̂ which is
computed from

�̂ = F̂†
3F̂4. (19)

In a similar manner, a is estimated from the diagonal
elements of �̂ :

�̂ = F̂†
1F̂2. (20)

In the existing DOD and DOA estimation algorithms
[11–13], a and b are calculated using (20) and (19) with
some modifications, respectively, and the whole algorithm
terminates. Unlike these algorithms, we continuously
update â and F̂. The details of our proposed iterative
algorithm are given as follows. First, note that from (13),
we have

F = UsT−1 (21)

and

T−1 = U†
sF. (22)

Combining (21) and (22) yields

F = UsU†
sF. (23)

In reality, F and Us are replaced by F̂ and Ûs , respectively,
and (23) provides an update of F̂. Note that F̂ on the right
hand side of (23) is constructed using Ĝ and Ĥ in (2) with
â and b̂, obtained from (20) and (19), respectively. After
calculating a new F̂, we reestimate �̂ and â using (20). To
ensure that the newly computed â and b̂ are sufficiently
accurate, we adopt a checking condition as follows. First,
vectorizing both sides of (9) yields

r = (
F∗ ◦ F

)
υ + σ 2 i (24)

where r = vec(R) and i = vec(IMN). Rewriting (24) in a
more compact manner, we have

r = Fζ (25)

where F = [F∗ ◦ F i] and ζ = [υT σ 2]T . Substituting
ζ = F †r into (25) yields

P⊥
Fr = 0M2N2×1 (26)

where P⊥
Fr = (FF † − IM2N2 ). Therefore, when a new F̂

is calculated, we also get |P⊥
F̂r| according to (26). Upon

convergence of F̂, the parameter vector â with minimum
value of (26) will be the final solution. We see that pairing
of DODs and DOAs is automatically achieved. The
proposed algorithm is summarized in algorithm 1. It is
novel in the sense that it utilizes an iterative update
procedure and includes an accuracy checkup step to
ensure that the DOD and DOA estimates are always more
accurate than the initial estimate. Therefore, the proposed
algorithm is expected to outperform the existing ones. We
show later in Section V that the proposed algorithm can
provide higher estimation accuracy, especially in the
scenario of identical DODs or DOAs. The main
computation of the proposed algorithm consists of two
parts. First, construction of R requires O(M2N2L), which
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is also required in the 2-D ESPRIT and ESPRIT
algorithms. The second part is the calculation of P⊥

F̂ ,

whose complexity is O(M6N6). When L is large compared
with MN, its complexity is comparable to that of the
existing ESPRIT algorithms. However, note that when M
< N and K = MN – M, the 2-D ESPRIT algorithm fails to
operate because U1, U2 ∈ C

(MN−N )×K are fat matrices and
thus � cannot be calculated. However, the proposed and
ESPRIT algorithms first calculate � and then construct F
to estimate �. Therefore, both a and b can be estimated.
As U3 and U4 have dimensions (MN – M) × K, K is at
most (MN – M) to produce a unique �. Consequently, the
number of identifiable targets of the proposed algorithm is
up to (MN – M). However, this number is the upper bound
and in some situations, the proposed algorithm fails to
work when there are (MN – M) targets. For example, when
K = N = M + 1 and all of the DOAs are the same, that is,
b = b1K and H1 = h1T

K where h ∈ C
N−1 is the vector

containing the first (N – 1) elements of h1 in (6). Then,
F = H ◦ G = h1K

T ◦ G = (h ⊗ IM )(1T
K ◦ G) =

(h ⊗ IM )G. As the dimensions of the first and second
matrices are MN × M and M × K, respectively, the rank
of F is M < K. As a result, Us cannot be obtained and the
proposed algorithm fails to work. Another example
is the scenario of N = M + 1, K = 2M, and DODs and
DOAs are uniformly spaced with same offset δ.
Mathematically, G = [g1 �g1 · · · �K−1g1], H1 =
[h �h · · · �K−1h], � = diag(δ) and δ = [1 δ · · ·
δM–1]T is a steering vector with |δ| = 1. Then,
H1 ◦ G = [ f̃ (� ⊗ �) f̃ · · · (� ⊗ �)K−1 f̃ ] =
[̃F1M2 F̃(δ ⊗ δ) · · · F̃(δ ⊗ δ) � (δ ⊗ δ) · · · � (δ ⊗ δ)] =
F̃�̃ where f̃ = h ⊗ g1, F̃ = diag( f̃ ), �̃ =
[1M2 (δ ⊗ δ) · · · (δ ⊗ δ) � (δ ⊗ δ) · · · � (δ ⊗ δ)]. Note
that δ ⊗ δ ∈ C

M2
equals vec(δδT). As δ ∈ C

M is a steering
vector, δδT ∈ C

M×M is a Hermitian Toeplitz matrix.
Hence, there are (2M – 1) distinct elements in δδT and δ ⊗
δ as well as all the columns of �̃. Now, the ranks of F̃ and
�̃ are M2 and (2M – 1), respectively, and it implies that the
rank of (H1 ◦ G) is (2M – 1) < 2M = K. As a result, �

cannot be estimated and the proposed algorithm fails.

IV. IDENTIFIABILITY OF MUSIC

We will prove that when K = MN – 1, the MUSIC
algorithm fails to operate even when there are infinite
snapshots, that is, L → ∞. In this case, R̂ = R defined in
(9). In the MUSIC algorithm, the noise subspace which is
a vector, denoted by u ∈ C

MN, is first computed. Then, θ k

and φk, k = 1, 2, · · ·, K, are found by solving ||FHu||2 = 0.
However, it will be shown that when K = MN – 1, there
are more than K sets of (θ k, φk) solutions, indicating the
nonidentifiability of parameters. First, we have

FH u = 0K×1. (27)

Next, we show that u equals the conjugate of its reversal.

LEMMA 1

JMNu = u∗ (28)

Algorithm 1 Iterative ESPRIT Algorithm

Require: X, M, N, K, tolerance ε, maximum number of iterations D
Initialization: i ← 0, d ← ∞
Compute R̂ = 1

L
XXH .

Compute K dominant singular vectors of R̂, Ûs and submatrices
Ûi , i = 1, 2, 3, 4

Compute eigenvalues and eigenvectors of Û†
3Û4, denoted by b̂ and T̂

Compute F̂ = Ûs T̂−1

Compute �̂ = F̂†
3F̂4

Compute b̂ and Ĥ
while i ε and d > D do

Set F̂old = F̂
Compute â = diag(F̂†

1F̂2)
Compute Ĝ and F̂
Compute F̂ = ÛsÛ†

s F̂
Compute d = |F̂ − F̂old|
Compute ei = |P⊥

F̂ r|
âi ← â
i ← i + 1

end while
â = âk where ek < ej , j = 1, 2, · · · , P , j �= k and P is the number
of elements in e
return â and b̂

where JMN ∈ R
MN×MN is the exchange matrix with all

elements being zero except one in the antidiagonal.

PROOF Postmultiplying (9) by u and using (27), we obtain

Ru = σ 2u (29)

Employing the idea of forward-backward approach for
spatially smoothing, we have R = JMNR*JMN and

JMNR∗JMNu = σ 2u. (30)

Premultiplying both sides of (30) by JMN and using
J2

MN = IMN yields

R∗JMNu = σ 2JMNu. (31)

On the other hand, taking conjugate on both sides of (29),
we obtain

R∗u∗ = σ 2u∗. (32)

As the rank of R ∈ C
(MN)×(MN) is K = (MN – 1), the

eigenvalue σ 2 has multiplicity one. Hence, u* is a unique
eigenvector corresponding to the eigenvalue σ 2 for R*.
Comparing (31) and (32) yields

JMNu = u∗. (33)

�
Now, we define the bivariate polynomial p(y, z) as

p (y, z) = yT U∗z (34)

where y = [1 y · · · yM−1]T , z = [1 z · · · zN−1]T ,

U∗ = vec−1(u∗) ∈ C
M×N. A special type of polynomial

called conjugate reciprocal (CR) polynomial is then
defined as follows.

DEFINITION A polynomial f (x) = ∑M
m=0 amxm is

CR if am = a∗
M−m.
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Let ym = exp(jθm), m = 1, 2, · · · , M, and
zn = exp(jφn), n = 1, 2, · · · , N. Then, we have Lemma 2.

LEMMA 2 The univariate polynomials p(y, zn),
n = 1, 2, · · · , N, and p(ym, z), m = 1, 2, · · · , M, with
degrees (M – 1) and (N – 1), respectively, are CR up to a
proportional constant.

PROOF Lemma 1 implies

(JN ⊗ JM ) u = u∗. (35)

Using the identity (ABC) = (CT ⊗ A)vec(B),
unvectorizing both sides of (35) yields

U∗ = JMUJN. (36)

Postmultiplying both sides of (36) by hn, we obtain

hn
�= U∗hn = JMUJNhn = zN−1

n

(
JMUh∗

n

)
. (37)

where the relationship JNhn = h∗
nz

N−1
n is used. As

hn ∝ JM h∗
n, the polynomial p(y, zn) = yThn is CR up to

the proportional constant zN−1
n . Similarly, we can show

that gT
m

�= gT
mU∗ = yM−1

m gH
m UJN. Hence, f (ym, z) = gT

mz
is CR up to the proportional constant yM−1

n . �

THEOREM 1 The roots of the CR polynomial equation are
either

1) unimodular, that is, they lie on the unit circle in the
complex plane

2) appear in CR pair, that is, if a is a root, then so is
1/a*. �

PROOF See [20].
Finally, we come to the most important result.

THEOREM 2 When L → ∞ and K = MN – 1,
there exists the (K + 1)th set of solution, namely,
(θK+1, φK+1) �= (θk, φk), k = 1, 2, · · · , K,

satisfying (hK+1 ⊗ gK+1)H u = 0 where
gK+1 = [1 exp(jθK+1) · · · exp(j (M − 1)θK+1)]T and
hK+1 = [1 exp(jφK+1) · · · exp(j (N − 1)φK+1)]T .

PROOF To prove the existence of the (K + 1)th DOD and
DOA, we consider two cases:

1) M and N are not all odd
2) both M and N are odd.

In the first case, either M or N is even. Without
loss of generality, let N be even. Assign θK+1 �= θk,

k = 1, 2, · · · , K. Then, we are going to show that at least
one of the roots of the CR polynomial equation
p(exp(jθK+1), z) = 0, with the proportional constant
being removed, is unimodular. Note that the degree of
p(exp(jθK+1), z) is (N – 1), which is odd, and thus
p(exp(jθK+1), z) = 0 has an odd number of roots. By
Theorem 1, there are at most (N – 2)/2 pairs of
nonunimodular roots and thus at least one root is
unimodular, namely, φK+1. Therefore, we have
p(exp(jθK+1), exp(jφK+1)) = 0, θK+1 �= θk, k =
1, 2, · · · , K, and the nonidentifiability is proved.

In the second case, without loss of generality, we
consider p(exp(jθk), z) = 0, k = 1, 2, · · · , K,

whose degrees are all even. Apart from exp(jφk),
k = 1, 2, · · · , K, all the K polynomial equations have odd
numbers of roots. Similar to the first case, there exists at
least one unimodular root for p(exp(jθk), z) = 0,

k = 1, 2, · · · , K, namely, zk = exp(j φ̃k). It remains to
show that φ̃k �= φk for all k. Suppose on the contrary,
φ̃k = φk, k = 1, 2, · · · , K, that is, all the polynomial
equations p(exp(jθk), z) = 0 have repeated roots. Then,
we have p′(exp(jθk), exp(jφk)) = 0 where p′(y, z) denotes
dp(y, z)/(dz), k = 1, 2, · · · , K. Expressing it in matrix
form yields

gT
k V∗hk = 0, k = 1, 2, · · · , K (38)

where

V∗ = U∗diag ([0 1 · · · N − 1]) . (39)

Vectorizing and grouping all vectors yields

vH F = 01×K (40)

where v = vec(V). On the other hand, substituting y = gk

and z = hk into (34) and performing similar operations,
we get

uH F = 01×K. (41)

Combining (32) and (33) yields[
u v

]H
F = 02×K. (42)

As u and v are linearly independent, the first matrix on the
left hand side has rank 2. Nevertheless, the dimension of
the left null space of the full rank matrix F ∈ C

MN×K

where K = MN – 1, is only one. It leads to a contradiction
and hence φ̃k �= φk for all k, which results in
nonidentifiability. �
REMARK Recall that the identifiability limit of the
ESPRIT algorithm is lower than that of the MUSIC
method because the latter fully utilizes the noise subspace.
As a result, the former cannot identify (MN – 1) targets as
well. This also aligns with our analysis in Section III.

V. SIMULATION RESULTS

Computer simulations are carried out to evaluate the
performance of the proposed algorithm by comparing with
the 2-D ESPRIT [11], ESPRIT [12], Chen et al.’s [13]
algorithms, reduced-dimension (RD)-MUSIC approach
[21], as well as ML algorithm [14] for joint DOD and
DOA estimation in bistatic MIMO radar. Furthermore, the
results of the MUSIC approach [17] initialized by
[11–13], are included, while the Cramér-Rao bound
(CRB) is employed as the performance benchmark [12].
The tolerance ε is set to 10–6 and the maximum number of
iterations is assigned as D = 10. The mean square error
(MSE) is employed as the performance measure:

MSE (θ) = 1

KR

R∑
r=1

K∑
k=1

(
θk − θ̂k,r

)2
(43)
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TABLE I
θk and φk in First Test

DOD//DOA

k θk/π φk/π

1 −0.81 −0.78
2 −0.74 −0.48

Fig. 1. MSE of θ̂k versus SNR at K = 2 and L = 256.

MSE (φ) = 1

KR

R∑
r=1

K∑
k=1

(
φk − φ̂k,r

)2
(44)

where R = 1000 is the number of independent runs, and
θ̂k,r and φ̂k,r are the estimates of θ k and φk in the rth trial.
We properly scale the noise matrix Q whose entries are
circular complex-valued zero-mean white Gaussian
variables, to produce different signal-to-noise
ratio (SNR) conditions. The SNR is defined as∑MN

m=1

∑L
�=1 ‖FHϒF‖2

/(σ 2MNL).
In the first test, overdetermined parameter estimation

is investigated. The parameter settings are M = 4, N = 5,
dt = dr = 0.25, K = 2, L = 256 while the DODs and
DOAs are listed in Table I. From Figs. 1 and 2, it is seen
that the MSE difference between the proposed and other
ESPRIT-type algorithms is negligible when SNR ≥ –5 dB
except that the ML algorithm has a larger threshold SNR,
which is 30 dB because of inaccurate initialization.
Furthermore, the MSEs of all ESPRIT algorithms are very
close to the CRB. We also see that the MUSIC algorithm
provides similar performance with different initializations.
As the number of targets is small compared with M and N,
the accuracy of all methods is very high. The average
computational times of the proposed approach [11–14, 21]
for a single run are 1.80 × 10–3 s, 7.55 × 10–4 s, 5.44 ×
10–4 s, 5.20 × 10–4 s, 8.22 × 10–1 s, and 47.95 s,
respectively.

In the second test, we study the performance of the
proposed algorithm in underdetermined DOD and DOA
estimation. The parameters are the same as before except
that K = 8 and the additional {θ k} and {φk} are shown in

Fig. 2. MSE of φ̂k versus SNR at K = 2 and L = 256.

TABLE II
Additional θk and φk in Second and Third Tests

DOD//DOA

k θk/π φk/π

3 −0.72 −0.07
4 −0.66 0.76
5 −0.61 0.55
6 −0.52 −0.75
7 −0.38 0.89
8 −0.22 −0.88

Fig. 3. MSE of θ̂k versus SNR at K = 8 and L = 256.

Table II. From Figs. 3 and 4, it is observed that the
threshold SNR of the algorithms in [11–13] are 20 dB
while that of the proposed algorithm is 10 dB. The ML
algorithm [14] performs unsatisfactorily because of poor
initialization while the algorithm in [21] is even worse as
it cannot resolve K pairs of DODs/DOAs for SNR <

30 dB. The superiority of our proposal in terms of
estimation performance over the other algorithms is
demonstrated in this more challenging environment.
Furthermore, the MUSIC algorithm performs similarly
with different initializations when SNR ≥ 20 dB. The
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Fig. 4. MSE of φ̂k versus SNR at K = 8 and L = 256.

Fig. 5. MSE of θ̂k versus SNR at K = 8 and L = 128.

average computational times of the proposed algorithm
[11–14, 21] for a single run are 9.80 × 10–3 s, 1.42 ×
10–3 s, 1.26 × 10–3 s, 1.08 × 10–3 s, 5.54 × 10–1 s, and
70.32 s, respectively.

In the third test, we change the number of snapshots
from L = 256 to L = 128 while keeping the parameters in
the second test unchanged. In Fig. 5, the MSE of the
proposed algorithm is lower than those of the ESPRIT
algorithms when 15 dB ≤ SNR ≤ 30 dB. The average
computational times of the proposed method [11–14, 21]
for a single run are 6.97 × 10–3 s, 7.87 × 10–4 s, 8.57 ×
10–4 s, 6.29 × 10–4 s, 7.62 × 10–1 s, and 48.28 s,
respectively. Similar to previous test, [21] cannot resolve
K pairs of DODs/DOAs for SNR ≤ 30dB. Furthermore,
the MUSIC algorithm can provide nearly optimal
estimates using different initializations.

Finally, we investigate the performance of the
proposed algorithm in underdetermined situation with
identical DODs and DOAs. The parameter settings are the
same as in the second test except that K is now set to 10
instead of 8. The additional values of DODs and DOAs are
depicted in Table III. Note that there are three identical

TABLE III
Additional θk and φk in Fourth Test

DOD//DOA

k θk/π φk/π

9 −0.22 −0.48
10 −0.22 −0.78

TABLE IV
Additional θk and φk in Identifiability Test of MUSIC

DOD//DOA

k θk/π φk/π

11 0.2700 0.06
12 0.32 0.42
13 0.34 0.70
14 0.38 −0.14
15 0.54 0.56
16 0.06 0.22
17 0.80 0.60
18 0.83 0.39
19 0.95 0.11

Fig. 6. MSE of φ̂k versus SNR at K = 8 and L = 128.

DODs and two pairs of identical DOAs now. From Figs. 7
and 8, the MSEs of the ESPRIT algorithms remain nearly
constant when SNR≥ 15 dB. It implies that they cannot
provide accurate DOD and DOA estimates. On the other
hand, the proposed algorithm, though suboptimal, is able
to provide consistent parameter estimates. In this test, the
MUSIC algorithm initialized by the proposed algorithm,
can provide nearly optimal estimates when SNR ≥ 30 dB
while the MUSIC estimates initialized by the ESPRIT
algorithms are very poor. That is to say, the MUSIC
actually degrades the initial estimate in this case while it
improves the estimates for other cases in Figs. 1 to 6. The
reason is that in the fourth test, the initial guesses
produced by conventional ESPRIT algorithms deviate a
lot from the true value. Thus, the parameter estimates
provided by the MUSIC algorithm using these poor
initializations may be aggravated. On the other hand, in
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Fig. 7. MSE of θ̂k versus SNR for identical DODs and DOAs.

Fig. 8. MSE of φ̂k versus SNR for identical DODs and DOAs.

Figs. 1 to 6, the conventional ESPRIT algorithms can
produce suboptimal but consistent parameter estimates
and the MUSIC algorithm can refine these parameter
estimates. As a result, the global optimum of the MUSIC
cost function is achieved in Figs. 1 to 6 but not Figs. 7 to
8. This test demonstrates the superiority of the proposed
algorithm against the conventional ESPRIT algorithms in
very challenging scenarios. Similar to previous scenarios,
the algorithm proposed in [21] cannot resolve K pairs of
DODs/DOAs for the whole SNR range. The average
computational times of the proposed algorithm [11–14]
for a single run are 9.56 × 10–3 s, 9.66 × 10–4 s, 9.47 ×
10–4 s, 9.44 × 10–4 s, and 48.96 s, respectively.

In summary, the threshold SNR of the DOD/DOA
estimated by the proposed algorithm is lower than that of
the ESPRIT algorithms. Moreover, the performance of the
MUSIC algorithm initialized by the proposed algorithm is
also superior to that initialized by the other algorithms and
is able to attain nearly optimal performance. Furthermore,
the RD-MUSIC approach cannot resolve K peaks when
the SNR is low and the performance of the ML algorithm
is very sensitive to the initial guess, especially when K is

Fig. 9. Nonidentifiability illustration of MUSIC at K = MN – 1.

large. On the other hand, the computational complexity of
the proposed algorithm is higher than that of the ESPRIT
algorithms but lower than that of the ML algorithm.

Apart from evaluating the performance of the
proposed algorithm, the nonidentifiability of the MUSIC
algorithm is illustrated with a numerical example. The
parameter settings are the same in the final test except that
K is now set to 19 and the extra parameters are shown in
Table IV In Fig. 9, we plot the DOD-DOA pairs satisfying
(27). We observe that there are infinite solutions. As a
result, DODs and DOAs cannot be uniquely identified by
the MUSIC algorithm.

VI. CONCLUSION

An iterative ESPRIT algorithm is devised for joint
DOD and DOA estimation in the presence of white
Gaussian noise for bistatic MIMO radar. The proposed
scheme, which includes a parameter-checking procedure,
outperforms the conventional ESPRIT approach in
challenging scenarios of underdetermined estimation
and/or identical DODs and DOAs. Employing its
estimates as initial guesses, the MUSIC estimator is able
to achieve near-optimal estimation performance at
sufficient high SNR conditions. Furthermore, it is proved
that the MUSIC algorithm fails to work when the target
number is K = MN – 1, which is its identifiability limit
claimed in the literature.
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